Expanded ATXN3 frameshifting events are toxic in Drosophila and mammalian neuron models.

نویسندگان

  • Shawn J Stochmanski
  • Martine Therrien
  • Janet Laganière
  • Daniel Rochefort
  • Sandra Laurent
  • Liliane Karemera
  • Rebecca Gaudet
  • Kishanda Vyboh
  • Don J Van Meyel
  • Graziella Di Cristo
  • Patrick A Dion
  • Claudia Gaspar
  • Guy A Rouleau
چکیده

Spinocerebellar ataxia type 3 is caused by the expansion of the coding CAG repeat in the ATXN3 gene. Interestingly, a -1 bp frameshift occurring within an (exp)CAG repeat would henceforth lead to translation from a GCA frame, generating polyalanine stretches instead of polyglutamine. Our results show that transgenic expression of (exp)CAG ATXN3 led to -1 frameshifting events, which have deleterious effects in Drosophila and mammalian neurons. Conversely, transgenic expression of polyglutamine-encoding (exp)CAA ATXN3 was not toxic. Furthermore, (exp)CAG ATXN3 mRNA does not contribute per se to the toxicity observed in our models. Our observations indicate that expanded polyglutamine tracts in Drosophila and mouse neurons are insufficient for the development of a phenotype. Hence, we propose that -1 ribosomal frameshifting contributes to the toxicity associated with (exp)CAG repeats.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microsoft Word - DMM029736.docx

Background: Polyglutamine expansion diseases are a group of hereditary neurodegenerative disorders that develop when a CAG repeat in the causative genes are unstably expanded above a certain threshold. The expansion of trinucleotide CAG repeats cause hereditary adult-onset neurodegenerative disorders such as Huntington’s disease, dentatorubral-pallidoluysian atrophy, spinobulbar muscular atroph...

متن کامل

Rescue of ATXN3 neuronal toxicity in Caenorhabditis elegans by chemical modification of endoplasmic reticulum stress

Polyglutamine expansion diseases are a group of hereditary neurodegenerative disorders that develop when a CAG repeat in the causative genes is unstably expanded above a certain threshold. The expansion of trinucleotide CAG repeats causes hereditary adult-onset neurodegenerative disorders, such as Huntington's disease, dentatorubral-pallidoluysian atrophy, spinobulbar muscular atrophy and multi...

متن کامل

The Role of the Mammalian DNA End-processing Enzyme Polynucleotide Kinase 3’-Phosphatase in Spinocerebellar Ataxia Type 3 Pathogenesis

DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kina...

متن کامل

The Truncated C-terminal Fragment of Mutant ATXN3 Disrupts Mitochondria Dynamics in Spinocerebellar Ataxia Type 3 Models

Spinocerebellar ataxia type 3 (SCA3), known as Machado-Joseph disease, is an autosomal dominant disease caused by an abnormal expansion of polyglutamine in ATXN3 gene, leading to neurodegeneration in SCA3 patients. Similar to other neurodegenerative diseases, the dysfunction of mitochondria is observed to cause neuronal death in SCA3 patients. Based on previous studies, proteolytic cleavage of ...

متن کامل

Double-stranded RNA is pathogenic in Drosophila models of expanded repeat neurodegenerative diseases.

The pathogenic agent responsible for the expanded repeat diseases, a group of neurodegenerative diseases that includes Huntington's disease is not yet fully understood. Expanded polyglutamine (polyQ) is thought to be the toxic agent in certain cases, however, not all expanded repeat disease genes can encode a polyQ sequence. Since a repeat-containing RNA intermediary is common to all of these d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 21 10  شماره 

صفحات  -

تاریخ انتشار 2012